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Nonmonotonic behavior of the capacity in phasor neural networks
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The stochastic dynamics of Q-phasor neural networks is discussed using a probabilistic approach. For
layered feedforward architectures and Hebbian learning, exact evolution equations are given for arbi-
trary Q at both zero and finite temperatures. The capacity-temperature diagram is presented. At zero
temperature a nonmonotonic behavior of the capacity is found as a function of the number of phases Q,

contrary to other multistate neural network models.

PACS number(s): 87.10.+e¢, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

In the literature there exist by now rather detailed dis-
cussions on the capacity and retrieval properties of Q-
state Potts and Q-state Ising neural networks. In particu-
lar, extremely diluted, layered feedforward and fully con-
nected architectures have been considered, the main
difference between those caused by the amount of correla-
tions among the neurons (see, e.g., [1-3]). A missing
piece in these discussions on multistate models is a study
of the parallel dynamics for the clock or phasor model,
especially on a layered architecture. These types of mod-
els have some interest in the processing of signals with a
circular symmetry such as the orientations of edges or
the directions of optic flow in images or phase patterns
over detector arrays. The dynamics of the extremely di-
luted version of this model has been discussed in [4,5].
Concerning the fully connected clock model, a replica-
symmetric mean-field theory approach has been derived
in [6]. The first step dynamics for zero temperature and
Q <4 has been treated in [7]. Recently this approach has
been generalized to finite temperatures [8]. Finally the
Gardner optimal capacity has been obtained in [9].

In this work we focus on the stochastic dynamics of
the Q-phasor layered feedforward network with Hebbian
couplings between adjacent layers and independently
chosen representations of patterns on different layers.
This allows an exact treatment of the parallel dynamics,
in contrast with fully connected networks. The main un-
derlying reason is that in the layered model as well as in
extremely diluted models there are no feedback loops. A
difference between the layered and the extremely diluted
architecture is that in the latter, any finite number of neu-
rons have disjoint clusters of ancestors, so that they are
completely uncorrelated. In layered models, however,
correlations among the neurons do exist precisely because
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of this common ancestor problem. Nevertheless, these
correlations can be handled exactly. Moreover, the lay-
ered architecture is especially interesting from a practical
point of view, e.g., in engineering problems.

Following a probabilistic approach [10] and making a
careful signal-to-noise ratio analysis we derive exact
layer-to-layer evolution equations at zero and at finite
temperatures for arbitrary Q. By using complex noises,
all Q including the case Q — o can be treated explicitly
in the same way without any difficulties. This is a fortiori
true for extremely diluted architectures (compare [8]).

We present capacity-temperature diagrams and write
down the nature of the retrieval transition. For zero tem-
perature we give, as far as we are aware, a new formula to
calculate the critical capacity for all architectures men-
tioned above. In the case of the layered feedforward and
fully connected models, the critical capacity shows a non-
monotonic behavior as a function of Q, contrary to the
other multistate models. For comparison we provide an
exhaustive list of possible behaviors in the Q-state Potts
and Q-state Ising networks.

II. MODEL

The model we consider is composed of multistate clock
or phasor neurons arranged in layers, each layer contain-
ing N neurons. A neuron can take (complex) values in
the set

$= ‘sk=exp i%k lk=0,1,...,Q—l]. (1)
Each neuron on layer ¢ is unidirectionally connected to
all neurons on layer ¢ +1. Given a configuration o (¢) the

local field in neuron i on layer ¢ +1 is given by

N
hilo(0)=3 Tt +1a;(1), @
j=1

where J;;(¢ +1) is the strength of the coupling from neu-
ron j on layer ¢ to neuron i on layer ¢z +1. The state
o(t+1) of layer ¢ +1 is determined by the state o(z) of
the previous layer ¢ according to the transition probabili-
ties
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Pr(o;(t +1)=s, ES|a(t)]

exp{BRe[h;(o(2))si ]}
=% , (3)
>, exp{BRe[h;(a(t))s;" ]}
=0

where the temperature 7 =8 ' measures the noise level.
We consider parallel updating. The configuration of the
first layer o (¢ =1) is chosen as input. At the next time
step, the second layer is updated according to the rule (3),
and so on. At zero temperature the dynamics is then
given in terms of the gain function

o, (t+1)=g(h;(a(1)))
where Int[ ] denotes the integer part of the expression be-
tween large square brackets.

Patterns are stored in this network with the Hebb rule.
The representation of the patterns on layer ¢ is a collec-
tion of independent and identically distributed random
variables (IIDRVs) {&H(r) e}, ue{l,2,...,p=alN}
with zero mean and variance 1. The synaptic couplings
between adjacent layers are then chosen according to

p=aN
("H)“ﬁ > & +D[EHn]* (5)

p=1

£ Arglh(a()]+Z

Q 27 Q

=exp {iﬂlnt

4)

where the £% and the J;; are complex.

This model generalizes the phasor model introduced in
[5] in two directions. First, the stochastic dynamics is
not defined via Gaussian noise, but through a finite tem-
perature spin dynamics (3). It is easy to check that the
latter obeys the detailed balance condition if J;; =J/ (and
J;;=0) and hence is governed by an Hamiltonian, leading
in the fully connected case to the Q-state clock Hamil-
tonian studied in [6]. Second, the architecture is taken to
be layered feedforward such that correlations between the
neurons exist because of the common ancestor problem
(see, e.g., [10]), contrary to the extremely diluted archi-
tecture where any finite number of neurons have disjoint
clusters of ancestors so that they are completely uncorre-
lated.

III. RETRIEVAL DYNAMICS

The retrieval quality of this layered Q-phasor network
can be measured by the main overlap between a stored
pattern and the microscopic state of the network

m#([):%z [E48)]* 0, () . 6)

We now write down exact evolution equations for this
model both at T =0 and T+O0 using a careful signal-to-
noise ratio analysis based on the law of large numbers
and the central limit theorem. We can pursue the calcu-
lation step by step in analogy with the one detailed in
[10], taking into account that we are working here with

D. BOLLE AND G. M. SHIM 50

complex noises. The results are the following. Supposing
that the initial data o (1) are a collection of IIDRVs with
mean zero, variance 1, and correlated with only one
stored pattern, say, the first one (u=1), i.e

E{o,(D[EHD]*}=

We arrive at the T =0 recursion relations

P
m(t—+—1)=fa’22ex (ﬂ_|zi )g(m(t)

8,,1mg, my>0. (N

+[aD(1)]'%z) ,

(8)
D(t+1)=1 -l—i d2~13—~——°" 21
2a
Xg(m(t)+[aD()]"?2)| , (9

where D (t) is defined as the variance of the residual over-
lap for the noncondensed patterns

D(t)=Var[r¥(t)]=Var

‘/_2 §1 t)

p>1. (10

Setting m(t +1)=m(t)=m and D(t+1)=D(t)=D
to obtain the stationary state and introducing the variable
x =m /(aD)'/? it is easy to derive that the critical capa-
city a, can be found from

ac=m3x f%l —G(x)zl s (11
where

F(x)zfdzz—e—"-ﬁ(—;”—‘z)g(x +2), (12)

G(x)=fdzz—e—§P(—;—|£z‘g(x +z). (13)

It is interesting to note that an analogous formula can be
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FIG. 1. The capacity a as a function of the number of phases
Q for the layered feedforward (circles) and the fully connected
(squares) phasor models.
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TABLE I. The behavior of a, for different multistate models as a function of Q and the nature of the

retrieval transition.

Fully Layered Extremely
connected feedforward diluted
Potts T (Q"%) 1 (Q"%) T (@'
discontinuous discontinuous discontinuous (QF#2)
Phasor N NS T (mw/4)
discontinuous discontinuous continuous (Q+3)
Q Ising 1 (@72 1@~ T ()
=1 discontinuous discontinuous continuous (Q+3,5)

2

derived for the fully connected version of this model, viz.,

2
a'FO=max X _Gx) (14)

x X
For the extremely diluted architecture a'ED’

=max, [F(x)/x]*. Comparing this with (11) and (14) we
find a useful inequality, relating the capacities of the
different architectures: a'*P)>a, > a(F®). We further re-
mark that a formula analogous to (11) and (14) can be ob-
tained for the Hopfield and the Q-state Potts models.

For the continuous phasor model (Q — ), which has
some particular relevance from a practical point of view,
the results (12) and (13) further simplify to

F(x)=fo“’drexp[—(r2+x2)]r11(rx), (15)

G(x)= fowdr exp[ —(r2+xH)][ri(rx)—rxI,(rx)] ,
(16)

where I, and I, are modified Bessel functions. This
clearly illustrates the advantage of using complex noises
(compare [8]).

IV. RESULTS AND CONCLUDING REMARKS

In Fig. 1 we show the capacity as a function of the
number of phases Q for both the layered feedforward and
the fully connected architectures. We realize that the
behavior is nonmonotonic. In particular, for the layered
network we find a minimum in the capacity, a=0.182, at
Q =8. For Q=7 we have a=0.183, for Q =9 we find
a=0.183, and for Q = we get ®=0.190. In compar-
ison, for the fully connected network the minimum
a=0.029 occurs at @ =10 and the values for Q =9, 11,
and « are a=0.035, 0.037, and 0.038, respectively. The
significance of this behavior is that the capacity no longer
decreases for growing values of Q greater than Q =8 for
the layered model and Q =10 for the fully connected
model. We remark that the minimum is relatively deeper
in the fully connected case.

This behavior is in contrast with that for the multistate
Ising and Potts models. For comparison with the latter
we have extracted the relevant information from the
literature [4-7,10—14] such that we get in Table I an
overview of this behavior in Q and of the nature of the re-
trieval transition line.

Here several remarks have to be made. The exponents

in the Q dependence for the Potts models are obtained us-
ing a log-log plot and are only given as a rough indica-
tion. Indeed they are extracted from results up to
Q =150 only and they are rather sensitive to the range of
Q values used (e.g., for the fully connected Potts model it
was correctly found in [11] that the exponent is 2 when
employing Q values up to 9). For the Q-state Ising model
the value for the gain parameter b is taken to be optimal,
i.e., such that the Hamming distance is smallest [10,14].
For the extremely diluted Q-state Ising models the capa-
city is always increasing when considering even and odd
Q values separately (and in fact increasing for all values
of Q from Q =5 onwards). For Q =2 all models become
equivalent to the Hopfield model. For Q =3 the Potts
and phasor models are equivalent and af°!=2q?"*°r and
for the phasor model itself a.(4)=a(2) (if the tempera-
ture is scaled appropriately).

For T+0 exact evolution equations can be derived by
exploiting the nontrivial idea to express the stochastic dy-
namic within the gain function formulation of the deter-
ministic dynamics using auxiliary thermal fields. Again
an analogous detailed analysis such as that in [10] can be
performed with the final results

2
m(t+1)= [ a2 2R 125 ($(m () +[aD (0] 722))

™
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FIG. 2. Capacity-temperature phase diagram for the Q =3,
5, 6, and « layered feedforward phasor model (solid, dashed,
dash-dotted, and dotted lines, respectively).
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1,02
D(t+D)=1+-1 | [a2p=lzl) .
2a T
X(S(m(t)+[aD (] %2))| ,

(18)
where we have introduced the thermal average
trskskexp[B Re(z's})]

(§(z))= . 19
z tr, exp[BRe(z’s)] 19

For Q— « these formulas can again be simplified in
terms of modified Bessel functions. Capacity-
temperature diagrams for different values of Q are shown
in Fig. 2. It turns out that the diagrams from Q =8 on-
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ward up to Q = coincide except for very small values
of T.

In conclusion, we have solved for arbitrary tempera-
tures exact evolution equations for the Q-phasor model
on a layered architecture using a probabilistic approach.
At zero temperature, we have discussed the behavior of
the critical capacity in function of the Q phases in im-
mediate comparison with other multistate neural net-
works.
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